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Quantum Chromodynamics (QCD)

] Fields:

f Quark fields, Dirac fermions (like e°)
w; (X)  Colortriplet: i = 1,2,3=N,
Flavor: f=u,d,s,c,b,t

A (X) Gluon fields, spin-1 vector field (like y)
H.a Coloroctet: a=1,2,...,8 =N -1

 Lagrangian density:

Loco (v A) ZV/. [(i@,—gAﬂ,a (ta)i,-)ﬂ—mf}wif

_%[ay A\/,a _avAu,a - gCabC Aﬁth”C :lz

+ gauge fixing + ghost terms

[t ,t]=iC,t

) abc“c
Color matrix:

 Gauge invariance:
v, — l//lj :Uji(X)Wi
A, —A,'=UXAU(X)+— ; [a U(x) Ju(x)

where A, =A,.L



Perturbative QCD

 Physical quantities can't depend on the
renormalization scale - v
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Can we choose p? as
large as we want?
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Larger Q?, larger effective y?, smaller a (u)

—) Perturbative QCD works better for physical
quantities with a large momentum exchange




PQCD Factorization

 Can pQCD work for calculating x-sections
involving hadrons?

Typical hadronic scale: 1/R~1fm™ ~ Agqp

Energy exchange in hard collisions: Q >> Agqp

—> | pQCD works at a4(Q), but not at a4(1/R)

d PQCD can be useful iff guantum
interference between perturbative and
nonperturbative scales can be neglected

Short-distance

Power corrections

~¥ prd
7, (Q1/R) ~ 6{Q) ® (1] R) + O/ GR)
~

Measured

Long-distance

—) | Factorization - Predictive power of pQCD

¢ short-distance and long-distance are separately

gauge

invariant

*» short-distance part is Infra-Safe, and calculable

** long-distance part can be defined to be universal




Lepton-Hadron DIS

O Kinematics:

Neutral Current (NC) Charged Current (CC)

negative four-momentum transfer squared Q2 = —q2 = —(f.f — ;'_J)2
2
fraction of proton momentum T = 2Q
P
inelasticity y = 1}%
— (L 2 _ @
squared cms energy s = (Ft +P) — Ty

0 Feynman diagram representation:

—> d*k —
Crickizie

2 2
——> “long-lived parton state if K <<Q




Factorization in DIS

A Collinear approximation, if fkii U xp

q q

v N Ve k2
K b +UVCT
P

Scheme dependence

Q DIS limit: v,Q* — oo, while x; fixed

——> Feynman’s parton model and Bjorken scaling

F,(X;,Q%) = x Ze o(%5) +O0(e, )+O£A§CDJ

O QCD corrections: plnch singularities in jd K.

VRN Ak
k

k 3 +

P P

O resum leading logarithms into parton distributions

AT

2

—> F,(%,Q%) = ZC (— o o ]@gof(x U )+Q(A(§coj




Parton Distributions

[ Gluon distribution in collinear factorization:
l ~[~1
|-n
g(x,u2)=jd4l 5(x——j ﬁ% + UV CT
' p —\J7p

*» Integrate over all transverse momentum!
% u2-dependence from the UV counter-term (UVCT)

d pz-dependence determined by DGLAP equations
a Z(DI(XIU) Z I/j( sj®¢j(xluuz)

Boundary condition extracted from physical x-sections

Q Adeo
F, (X, C X @, @
(xQ)Z( % ]¢(xu)+[Qj

1 extracted parton distributions depend on the
perturbatively calculated C, and power corrections

* Leading order (tree-level) C, { LO PDF’s
* Next-to-Leading order C, } NLO PDF’s

« Calculation of C, at NLO and beyond depends on
the UVCT ——> the scheme dependence of C,

——> the scheme dependence of PDFs



Factorization in hadronic collisions

O Basic assumptions:

/ 2
Drell-Yan
do AB— ("1™ X (Q ) >ﬁ\/<
<* no interaction /
between A & B 2
before hard coll. | __
R— Hard coll
% single parton
2 / 2
/
< no quantum ~ =<{ X >,\N<
interference

between hard
collision & 2
distributions (X) =<g <~—— PDFs

do Y C;EY
—> dQAB _Zjdxl¢a/A(X1)dX2¢b/B(X) Qb

How well can we justify above assumptions?




Heuristic Arguments for the
Factorizations

O There are always soft interaction between two hadrons
< Gauge field A ,is not Lorentz contracted
> Long range soft gluon interaction between hadrons
“* a “pure gauge field” is gauge-equivalent to a zero field

> Perturbation theory to “mask” factorization, except
at the level of gauge invariant quantities

% Field strength contracted more than a scalar field

Factorization should fail at 7/_2 ~ Q_4

It does!

o' (Q*)=0c"(Q? )+—0NLP(Q )+— QY +
\ / \

factorized Not factorized

O Single parton interaction:

xp(x,Q%)-(1/Q°) x¢(x,25GeV?) <1
rR? m-25-25

«» If x is not too small, hadron is very transparent!

% Extra parton interaction is suppressed by 7/Q?




3. MAGIC OF NUCLEAR TARGETS
e Facis:

— Nuclear binding energy is about 8 MeV per nucleon

< typical energy exchange in hard collisions
— But, large and non-trivial nuclear dependence have
been observed in almost all processes involving
nuclear targets
e ENC effect and nuclear shadowing (since 1983)
— Ratio of structure functions
1 A 2
A FE (:I": Q }
1 17D 2
2 FE (:E: Q }

e Cronin effect (since 1975)

Rp, = # 1

Anomalous nuclear dependence in hadronic single

particle transverse momentum distribution

— process: h + A — particle(p) + X

fr.A i N
— definition: Ed” 'i” A«(p)

— a(p) < lfﬂrlﬂpr, and > lfmr large pr
MNote: (IAA(_F} < 1 for all observed pr at RHIC



e Nuclear dependencein acorplanarity:
— process:  p(ory) + A — jet(£) + jet(é') + X
— definition: ET = ET + E;T
— momentum imbalance:

{k2) shows large nuclear dependence

e Transverse momentum broadening:

— process: A+ B — y* [ €T (¢)] + X
Jap(q) + X

— averaged gr:
) | daz a7 2%
{QT} — quz of ex ~

— broadening:

Alqr) = (ap)*® — (@)™ #0
shows strong nuclear dependence

e J/) suppression:
— process: A+ B—= J/Yy+X

— ratio of x-section:
A

Ry = Znw <1



SOURCES OF ANOMALOUS NUCLEAR DEPENDENCE

e Distance scales where hard collision took place:

Lepton or Kk Observed particle

Beam parton

| Target parton of
Momentum xp

Interaction region

1

— fransverse size: ~ 3] < 1 fm < localized
e L 1
— longitudinal size:  ~ Az(z) ~ 25
— longitudinal size of a nucleon:  ~ Az, ~ 2r (%)

® Binding energy should have very little effect on observed

anomalous nuclear dependence

e Factthat nucleons in a nucleus are very close to each
other should be a key in any potential explanation of the

nuclear dependence

e crtical parton momentum fraction: .

Az, = Az(z) &z, = 52— ~ 0.1

2mr

— Small x physics: z < x. < Az(z) > Az,
more than one nucleon “involved® In collision
— Large x physics: = > z. < Az(x) < Az,

single scattering I1s localized within one nucleon



“CONCLUSIONS” WITHOUT DETAILED CALCULATIONS:
e Small o case:

— multiple nucleons are involved in the region of hard

INteraction

— Coherence between partons from different nucleons

leads to strong nuclear dependence

— Examples: shadowing, gluon saturation, etc.

e Large r case:
— Single hard scattering is localized in all direction

— Any anomalous nuclear dependence is a consequence
of elastic multiple scattering covering different
nucleons
= nuclear dependence should be proportional to

nuclear medium size

= change spectrum, but, not total cross section
— Examples: GLV approach to Cronin Effect
e Coherent multiple scattering 1s suppressed by power of
1/(Q? for each addifional scattering

— Examples: Resummed all power corrections to

DIS structure functions — shadowing



Multiple Scattering in QCD

O Classical multiple scattering — cross section level:

Kinematics fix only
P, + P,

Out
T either P, or P
§ §T P, = e

can be ~ zero

dO'DOUbIe _ smgle ( D.., pl) single ( D, pout)

x dp,dp,o(p, + P, + Py, — Po) | Finite

O Parton level multiple scattering (incoherent/indep.)

double

In pQCD, above do —o0asp, orp, >0

¢ parton distribution at x=0 is ill-defined
*» pinch poles of k in above definition

1 Quantum mechanical multiple scattering
- Amplitude level

Pin y Pout o P, | * 3-independent
N parton momenta
Py sz tp, tP, “ no pinched poles
Yi Y, Y3 0 “* depends on 4-parton
correlation functions

(Alg" (00" (¥:)8(y,)$(y.)] A)

Need to include interference diagrams




Classification of nuclear dependence

- Universal nuclear dependence from nuclear
wave functions (in PDFs):

N
P X

[ Process-dependent nuclear dependence
(power corrections):

¢ Initial-state:

+» Final-state:

¢y
/V‘

[ Separation of medium-induced nuclear effect
(process-dependent) from that in nuclear PDFs
(process-independent)




All twist contributions to

shadowing
K’ Variables:
g=k—k', v=E-E/,

y=(E-E)/E, Q" =—’,
o x=0"/(2p-q)

em

dxdy Q7 xy
F(x,Q%), F(x,Q%)

do, 4na,, 1|Y° , L myxy ,
|:2 2XF1(X1Q )+(1 y 2E jFZ(X1Q ):|

- the DIS structure functions

* Lightcone gauge: A-n=A"=0

* Frame: n=[10,0,], n=[0,10,]
Q’ Q
q=-Xp'N+_>—n, p=Np", Xp+q=-"—n
2xp* 2xp”
P (=) Same impact (+)
When X<Xc v parameter — p
virtual photon /
probes more poL
than one ——
nucleon atthe | P~ T
given impact X
parameter 2) b)

J.W. Qiu and I. Vitev, hep-ph/0309094




Calculating power corrections

0 When x5 < 0.1/A"3, the DIS probe covers
all nucleons at the same impact parameter

(a)
O Fully coherent multiple scattering
——) Take all possible insertions and cuts

ReQ)=2 F & D} d anT(LT)(X’QZ)zA':T(LT)(X" )%EZ(AM_D’QZ;I;

Q d"x o;
R, Q) =ART(xQ )+Z—( 5 jFZ(Ac\;; _1)} X anT(L;)n(xX’Qz)

zAFL(LT)(X,QZ)Jrgz R Q)

1000 T T T T T T T T T T
E : Q =5Gev’
¢ slope of PDF’s 00 HAX
determines the i
o 10F
shadowing S |U E ;

% Valence and sea < 'quarl_’o «
have dlfferent 0-1: — (TEQ5 LO |-quark distribution
suppression E |

|

L 1 L 11 1 1111 1 L1 1 1111 1 11 1 1110
0.001 0.01 0.1 1
X



Comparison with existing data

1 Characteristic scale of power corrections:

0.1

T | ‘

LLLLL
¥ ||l1 Il|||||
i +"'+‘.a ® FNAL-E665
i + z +* | & CERN-NA3T
= T
0.8 «T it —1
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The Gross-Llewellyn Smith and
Adler Sum Rules

O Apply the same calculation to neutrino-nucleus DIS
-- predictions without extra free parameter

O Gross-Llewellyn Smith sum rule:

D.J.Gross and C.H Llewellyn Smith , Nucl.Phys. B 14 (1969)

S... =idx (R 0@+ (0 Q) =30 A

_ _ 0.5 T ] 1 T 1 LI

SGLS - #U +# D - 3 | SGLS=3[1'AGLS] a,, Charm mass M .
. , 0.4+ m:s aé;hicé;o:;; corrections |
: TO One Ioop In as (Q ) B u Serpukhov data N
2 0.3 ® CCFRcaa ]
Ags =a,(Q°) /7 2 L 1 |
< 02 ~t._ ; .
* Nuclear-enhanced I $ -
: 0.1 = -
power corrections i ¢ +““==+-———-—_

are important L

1 Adler sum rule:

S.Adler , Phys.Rev. 143 (1964) 1 3 10 20

S, = idx %(szn(X,Qz)— 7 (6,Q%)) =1+ Ay,

Predictions are compatible with the trend in the
current data




Transverse momentum broadening

Lepton or Observed particle
Beam parton

s small KT kick on a
steeply falling distribution

> Big effect

% A'3-type enhancement
helps overcome the 1/Q?2
power suppression

d Data are concentrated in small p; region, but,
do/dQ?dp+? for Drell-Yan is Not perturbatively
stable (resummation is necessary)

O The moments are perturbatively stable (infrared safe)

jdeZ ( pTZ)N {deszfpz} with N >0
K

1= g 1 s

U Transverse momentum broadening

A<p$> E<p-|?>pA(orAA) _<p$>pN




Drell-Yan transverse momentum
broadening

Plus interference
diagrams

d Broadening: > e [ dxyn (T, (/%)
q

2
) Arar,

A<pT>:( 3 jZeg_“dxgﬂq/h(X)¢q/|\1(T/X)/X

Q Four-parton correlation functions: X. Guo (2001)

dy™ o cdy;dy, _
Tq/A(X): Y e™ % y26(y —Y )9(—)/2)
2 27

< (AR (W, O Ly, (OF ()] A

~ lel/:agpqlA(X)

 Predictions:
» A13-type dependence

An’a + Small depend
Alp2) ~ s 72 U3 mall energy dependence
< T> to the broadening

1 Fermilab and CERN data

Show small energy dependence and give A2~ 0.01 GeV?



Summary and outlook

 Predictive power of QCD perturbation theory relies
on the factorization theorem

O The Theory has been very successful in interpreting
data from high energy collisions

1 PQCD can also be used to calculate anomalous
nuclear dependence in terms of parton-level multiple
scattering, if there is a sufficiently large energy
exchange in the collision

M In nuclear collisions, we need to deal with both
coherent inelastic as well as incoherent elastic
multiple scattering

“» elastic scattering re-distribute the particle
spectrum without change the total cross section

“* Inelastic scattering changes the spectrum as
well as the total cross sections

O nuclear dependence is a unique observable to
parton-parton correllations, the properties of
the medium.
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